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In the present paper there are three exact sclutions of the problem of motion
of a rigid body with a I'ixed point which contains cavities filled with an
ideal liquid, the five unknown varlables are algebraic functions of the sixth
one, whose dependence on time is determined by quadratures. The first two
solutions are generalizations of the integrabllity case of Steklov [1] and
Kowalewski [2], and the third solution coinceides with the solution which was
previously obtained by Goriachev in [3]. In the last case the motion of the
body has the kinematic explanation bdsed on the equation of a stationary
hodograph [4].

1. Bquations of motion of a body. We shall use a special rectangular
coordinate asystem [5] fixed in a body. The first axis passes through the
fixed point and through the center of gravity. The second and third axes
are so selected that in the expression for the kinetic energy, which is the
quadratic form component in x, y, 2z of the angular momentum

2T = az® + af® + a,2* 4+ 2 (by + by2)

the term containing the product ys 1s absent. In such a coordinate system
the problem is reduced to two first order equations [6]

[(asz + b,2) (y + M) — (ayy + 612) (z + A)] [y + Ay dz/ dz —
— (z -+ A) dy / dz] + (az + by + ba2) [y + M)* + (2 + M)l +
bz 4 D) (Vs (@2 + o + a2) + B+ bad) T — (@ + bi2) X
X (y + M) — (@az + bor) (2 + h) —El — k=0 (1.1)

{l(asz + by2) (y + A1) — (@ + 6,2) (2 + M)l dy / dz —
— (az + by -+ b,2) (2 + Ay) + (22 + bp2) (z + WP +
+ {l(ay + b,2) (z + hy) — (agz + by2) (y + M)l dz/ dz —
— (az + by + b,2) (y + M) + (ay + byz) (z + NP +
+ [, (az® + ayy® + ay7®) + (by + bz2) 2 — EP? — T2 =0

26



Equations of motlon of & body with a fixed point 7

Here x and g are, respectlvely, the area constant and energy constant,
T 1is the welight of the gyrostat multiplied by the distance between the cen~
ter of gravity and the fixed point, the constants ), \;, A, are the compo-
nents of the angular momentum of the liquid in a circulatory motion.

If from Equations (1.,1)
y=y (), z=2z(2)
are found, then the dependence of the remaining variables on x are given
ORI g = Uy (a2t + @y + @)+ (b + baD) 2 — B
7' = (axz + by + by2) (y + 1) — (e + by2) (z -+ ) +
+ a2z + bez) (y + M) — (ay + by3) (2 - Al dz / dz (1.2)
1" = (ax + by + b,2) (z + Ay) — (ayz + by2) (z + A) +
+ay + 6,2) (2 + Ay) — (@22 + byx) (y + M) dy / da

T = Fvlv T, = Fv21 T” = FV3 (13)

Here

and v, vy, vs are the components of the unit vector in the direction of
the force of gravity. The dependence of x on t is established by the

quadrature dx .
o = (@22 4 b22) (y + Ay) — (ary + 6,2) (24 hy) (1.4)
Equations (1.1) become considerably simplified if the principal axes
coincide with the special axes (b, = b,= O) , and the vector 1 1s directed
along the first coordinate axis (M' Ap= 0) . Using the customary notation
for the principal axes = = Ap, Yy = Bq, 2 = Cr,a= A", a; = B}, a, = C},
we can rewrite (1.1), (1.2), (1.4) as follows:

20+ (4 —B) p* + 24p] - — [2R +(4 — C) p* + 24p) e

+@p+n[o—R+C=DI] - E=OE (1.5)

B(B—C)I[2Q +(4A —B) p? +2\p] (%)24’_0(0_3) 2R +
+(4—~C) g 2] (4L ) papc[Q—R + C=PET 2 E-OFFC

A
—R)A ’ d ” dR
T=(QB~—C) —E, Y =q7}?—’ =1 (1.6)
Adp /dt = (B — C) gr (1.7)
The variables ¢ and R are replacing ¢ and r
r?(B=C)C
T—(A_B)P2+27VP+2Q (1.8)

¢ C=PP — (4 —0)p +20p + 2R

Differentiating (1.5) with respect to p wWe obtain
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az2Q "dR d
2R + (4 — O+ 21 G + |5+ —Op+2] 2L+

d -
+Bp—d—ﬁ~——(~9§—?§f—+BE=0 (1.9)

20 +(4 —B) p* + 2001 G5 + [+ a4 —Byp +1] 45

+ep gt — Q2 RAC 4 cp=o (1.10)

2. The oconditions for the existencs of polynomial solutions. We shall
introduce the polynomials

Q=0by+bp+b,p>+ ...+ bypn ¢, +0 2.1
R=cy+ep+oep?+ ..o+ cmp™ (n >m) (2.2)
which satisfy Equations (1.5).
If we let m > 2 , and if in the identity obtained from substituting (2.1},
{2.2) into (1.10) we set the coefficlent of p3"*™-2 equal to zero, then we
obtain 202C (C — B) cubn? = 0 (2.3)

Equation ¢ = 3 18 not used in the derivation of (1.1), consequently from
(2.1) and (2.3 we have that g,= O for all = > 2, that is

= ¢y + c1p + &P} (2.4)
The polynomial (2.1) cannot be of higher degree than four
Q = by + byp + byp® + byp® + byp* (2.9)

The polynomials (2.4) and (2.5) should turn (1.9), (1.10) into identities,
which leads to the following conditlons

by [2c,+-4 —C —AB/16 (B —C)] = 0
b, [12¢, -+ 4C — AC / (B —C)] = 0
28b, (¢, + A) + 9, [2¢, +4 —C —AB /9B —C)1 =0
4bye, + by 10c, +3C —AC/ (B —C)] =0
24b,co 4 1564 (¢y + A) +4b, (2¢, + A — C) + 2¢,B —

— (by —c)AB/(B—-C)=20 (2.6)
3byc, + 4y (2by + A — B) + 26,0 — (by — c) AC/ (B —C) =0
12byc, + 60, (¢; + A) + b, 2c, +4 — C) +¢,B— (b, —¢,)AB/(B—C)=0
6, (b, +A) + ¢, (2, +A4 —B) +bC — (b, —c)AC/(B—C) =0
4byco + b, (c, + 1) = BH, begby + ¢y (by + A) = CH

The constant p replaces f
H = (by—c)d/(B—C)—E (2.7)

Substituting (2.4) and (2.5) into (1.8) and (1.6) and taking into account
(2.7), we have
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@B(C —B)/A = Q2,+A4—C)p*+2(c;+Np -+ 2 (2.8)
rPC(B — C) | A = 2b,p* + 2b,p® + (2b, + A — B) p® + 2(by + A) p + 2b,
1= [A/(B — O)] [byp* + byp* + (b — cd) p* + (br —e) P1 + H

Y = ¢ (4bap® + 3b3p* + 2b,p + by), 7" = r (2cp + ¢1)
The dependence of p on ¢t 1is found from (1.7)
BC(dp/dt)? =1[2c,+A4—C)p*+2(c, +FMp+ 2¢,] [2b4p* + 2b3p° +
+@2py+ A—B)p* + 2 (b, + ) p + 2b] (2.9)
Since Formulas in (1.5) are the first integrals of Equations (1.9) and
(1.10), then the relations following from the requirement that (2.4%) and (2.5)

make (1.5) an identity, turn out to be the consequence of conditions (2.6),
with the exceptlon of the relations constralning the constants x and T :

2 (boc1 — cob1) A 2= H12 (b_“cf __cob12) 4. (2.10)

k= MH + B—C ’ C B |B=C

The three different solutions of Equations (2.6) lead to the three par-
ticular cases of integrability of the equations of motion of a body with a
fixed point. These solutions are given in the Sections 3 to 5.

3. The first solution (n =~ 2)., When »,= b,= O then Equations (2.6)
are satlisfled by

po A=B A —0) _A4—B)(4—0)
2= T 2(3C —4) 27 TT2@EB — A4)
3BC — AC — B? 1 3BC — AB — (C?
”1=*[C @C—ArEE—4) 1) CF”[B @B A (2C —A) ~ ‘]

C (2B — A) ja_ 3BC — AC — B
bo=3a—B @ -0 {H— 2C — AP 2B —Ap

+ 4B (3B + 8C) — BC (5B + 01}

143 —24*(2B+C) 4+  (3.1)

B (2C — A) { 3BC —AB — C* s _ 9410¢ + B) +

“=3a_—BAd_—0Y " MeB—arEc =4 |

+ AC (3C + 8B) — BC (5C + B)]}

Substituting (3.1) into (2.8) and (2.9) we obtain the first of the two
solutions presented without derivation in [7]. The constants x and T
are determined from (2.10) and (3.1) in terms of A4, B, C, X, # . It is
natural, however, to assume that I 4is prescribed and to express y in
terms of T . We have

AB—0C2(B+ C —24) [242 — 34 (B + C) - 4BCP? )‘/,
= 2 4
H—j:(I‘+A 4(A — B2 (A —C)2 (2B — A (2C — A)* +

MA{N/2( —B) (4 —C) 2B — A2 (2C — A)2] — 1}/ (2B — A) (2C — A)

where

N =24%BC + 43 (B +C) (B* — 8BC + C% + 264°B2C? —
—124B°C? (B + C) + 2BC* (B + C)2

The two values of the parameter 5 lead to the two varlants of the derived
solution. This has been noticed by Kuzmn [8] for the Steklov's solutlon[1]
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(which in this Section can be obtained by setting i = 0).
4, The second solutdon (n = 3 ), Let by=0, by==b=£0. If the quantities
A, B, ¢ are related by
A = 18C (B — C)/(108B — 9C)

then in this case- che coefficlents of the polynomials in (2.4), (2.5) are
determined from (2.6

We also find

_ 3 ,3C—28 3 3C (3C — 2B)? (3C — 4B)
=35 Clog—oc * 6 =—2h— b (108 — 9C)¢
42108 —9C 3 & (3C — 2B) @B —C) _81C (B — C)Y3C— 2B (3€ — 4B)
= 4BC T2 b 108 — 9C #?B (10B — 9C)3
y__ 3(C—2B)(21C' —S4BC 4 22BY) 3 10B—9C
3 5= — 9B (10B —90) — 5 bA—5¢

3 . (10B—9CR A
b= 5 b\ — e + grac (7129 C* — 1917 BC? 4 1512B°C — 388 BY) -+

3 (3C — 2B)2 (3C — 4B)
8 BB?(10B — 90)

8A3 (10B — 90 W 10B — 9C - .
bo = — 5 g — TAECE 3035 (2187C* — 7533 BC® 4 9234BiC* —

A 3C — 2B
— 5036B3C - 1064B4) -}- i m‘)‘ (729C* — 2754BC® I 3951B%C? —

(243C3 — 648BC? + 495B%*C — 122B%)

3(B—C)(3C —2B)® (3C — 4B
— 2582B3C + 632B%) — ( 16[33((103 — Z)C)s ) (2187C* — 5832BC* +

- 4131B2C? — 30B%C — 488B%)

Substituting these values into (2.8) and (2.9),we obtain the second solu-
tion, which is derived in [7].

5, The third solutdon (n = 4 ). Assuming that », # O , we require
that the parameters of the system satisfy the following conditions

A=10, A=16C(B—C)/ (9B — 80) (6.1}
Equations (2.6) give
_phc —3B e 3 HB* (9B — 8C)
©2@=%3p 8C °* = 00—"_8(4C—~3B)(2C——3B)(20——B)

b= 2C (4C — 3B)*(4C — 5B) (2C — 3B) (2C — B)

HE?® (9B — 8C)* by =0 (5.2
_ 2(4C — 3B) (2C — 3B) (2C — B) 3 9B — 8C
by = — B (98 — 80) v =00 b= aETan A
and from (2.8) we find
16C2 4BCH
¢+ @B —8CF P = (40 < 3B) 2C — 3B) (%€ — B) (5.3)
_ 840 (IC — 3BP (1C — 5B) (2C — 3B) 20— B) ,
(9B — 80 B°H - (5.4)
16 (4C — 3B) (16C* — 28BC -+ 9B?) 8H

(OB — 8C)B P+ 38
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. 32C* (4€ -— 3B)* (4C — 5B) (2C — 3B) (2C — B) ,
= pr—

HB (95 — 801 (5.5)
16C (4C — 3B) (8C* — 15BC + 6BY)
- B (9B — 8C) Pt H
, _8C (4 — 3B)3 (4€ — 5B) (2C — 3B) (2C — B) . B (9B —8C: H
T= B (9B — 8C9) Py [P — 3C4C — 3B7°GC _53)]

. 4C — 3B
Y =2C g5 —gc Pr

Goriachev [3]) obtained the same solution in a different way. The condi-
tion A = 0 1s satisfied always when liquld filled cavitles are absent.
Besides 4 < B+C , B<A+(C . This, together with (5.1) gives

0.375B < C < B (5.6)

Prom (2.10) and (5.2) we have that % =0 , g = —T . The minus sign in
the last relatlion was chosen for the following reason: when g =T > O then
by 25.3; we have that 0.55< ¢ <0./58, and all terms on the right-hand side
of (5.4) are negative. The requirement that at 7 = — ' the quantities
¢, r satisfying (5.3) and (5.4) must be real, constrains the interval (5.85

into 0.375B < C < 0.5B .7)

From (5.1) and (5.7) we conclude that B> 4 > ¢ , which means that the
center of eravity of the body 1s on the mean axis of the ellipsold of inertia.

Fig. 1 Fig. 2

Let us express the components of the angular velbceity in ./570 units and
introduce the dimensionless parameter o = ¢/B . From (5.7) we have

0.375 < ¢ < 0.5 (5.8)

Introducing the new variable ¢ and remembering the notation in (1.3) we
can write the solution {5.3) to (5.5) in the dimensionless form

1/
_ 9—8 — — 2 o r=2(2=% 6, —0) (@, +0)
P=ga—am Vo ¢ e AR (o e 1 (5.9)

6 — 15¢ + 8¢? 5 — 4c¢
v1=—1+4—3—_—2;——a~2 s O

5—4 2 —_— 5 —4¢ /2
vzzz-?,——c(s—:—lw—c>lfo(o°——o), v3s——2( 5o 6 (0o — 0) (01+0)) (5.10)
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Here ] 3 4e R(c) + 9 — 28 — 16¢2

TBTA 2 T IEE 03 =29 (=29

R (e) — 9 + 28c — 16c N
Rt R i g7y ¢ 2cc) » R (e) =V (3 ~ &) (27 — 92 + 960* — 3209)

G

In the interval {5.8)
0 <0y < a° 0< o (5.11)
The time dependence of ¢ can be obtained by substituting (5.9) in Equa-
tion (1.7) which has been previously put into the dimensionless form
do/dt = Vo (g, — 0) (6° — 0) (0, + 0) (t=tV G —=4c) T /Ba%) (5.12)
From (5.12) we are able to conclude that g 1is an elliptic function of
time. Varying within its bounds
0o o, (5.13)
i1t moves from one bound to another in a finite time.
6. Kinematio sxplanation, The motion of a body with a fixed point can
be regarded as the rolling without slip of a curve fixed in the body (the

moving hodograph of the angular velocity) on another curve fixed in space
(the stationary hodograph of the angular velocity).

In the case which was considered in the previous Section the moving hodo-
graph is given by Equations (5.9). This curve is the intersection of the
elliptic cylinder 16 o2 b

P e s PR T B =90 =29

with the fourth order cylinder

8 3 — 4c) (9 — 28¢ + 162 6.1
o= 3—_-_0-4? + 16 it ) ((9 g ?) Pt — (6.1)
64 (3 — 4¢)3.(5 — 4c) (3 — 2¢) (1 — 20) p

(9 — 8c)t

The directrix of the cylinder (6.1) is symmetric with respect to p and
r . Wnhen ¢>>¢y=1/,(7 — }13) this curve is concave, when ¢ < g, 1t has
inflection points (Fig.l). The corresponding moving hodographs are shown in
Fig.2.

Let us introduce a statlonary cylindrical coordinate system {, p, a, the
(-axis along the unit vector w (see (1.13)). The fixed hodograph of the
angular velocity is given [4] by Equations

Wp = pvy + gV, -+ vy, of=p+ ¢+ F— ol
W do = (rvy — gvg) dp + (pvs — rvy) dg + (gv, — pvy) dr

We shall substitute here (5.9) and (5.10)

o =YC [_gfgc 42 (5 — 4o) 0 % (5 — 40) (3 — 20) (1——2c)c"] 6.2)
3 — 4e 2

@2 = ko + ko — ko + kg0 — kot — ky0° (6.3)
da 11 (0)
do  nol(0) ) (0, — 0) (6°—0) (0, + 0)

{6.4)
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Here
. 4e (6 — 15¢ 4 8¢2) 27 — 120c + 159¢2 — 64¢
0= 3" 4e) (3 — 2¢). (1 — 20),° b = 4 (3 — 4o)?
p = o (8= %) (18 — 81c + 96c2 — 3209) (5 — 4c) (27 — 96¢ 4= 80c2 — 16c%)
2 7 B — %ot v k= B — 4o
b — 4o B =40 (3 — 20 (1 — 20) (5 — 40)? (3 — 2¢)2 (1 — 20)?
4= B — 407, : ks = B = 4oy
n=(3—40) V(3= 4 (® — 40) (3 — 2¢) (1 — Z¢)
II (0) = ng — ny0 — nyE? — ngo® 4 nyot (6.5)
27 — 69c + 48¢% — 8¢3
ng = 2¢

(5 — 4&) (8¢ — 3) (T — 16¢ 4 8¢2)
B_29d—29 + M™=2% 3 =20 (1 =20
ng = 3 (5 — 4c) (— 18 + 107c — 176¢2 + 80c%)
ns = (5 — 40) (3 — 20) (1 — 20) (63 — 172¢ 4 96¢%)
ng=30 —4c)2 (3 — 2c)2 (1 — 2¢)%

The fixed hodograph (6.2) to 26
meridian is given by Equations (6.

4) is on the surface of revolution whose
2) and (6.3).
Constiructing this meridian we take into agccount that in the interval (5a3)
a, (0) =0,

@y (04) = 0, min o (0) = w0y (6%) <0,
besides

0Lo* <o, <0y

o, = {V27 = 96c 4 1102 — 40 — ¢ V2 (5 — 40} {(3 —2¢) (1 — 2¢) V2 (5 — bc))?
o* = {V 135 — 480c -} 590 ¢ — 232¢® —

—3 V206 =43 {(6B—2) (1 —2) V2E— 4o}t
The magnitude of the

ular veloclty is at 1ts minimum in the left-hand
side of the interval (5,13) and at its maximum when

0 = 0,, = (171 — 460c + 256¢?) {32 (5 — 4c) (3 — 20) (1 — 2)}!

04y <0, When o 18 close to 0,375 (6.6)
O,. >0, when o 4is close to 0.5 6.7

Fig.3 shows the part of the meridian which corresonds to the positlve
sign of the radical in (6.2). By changing the sign of the radlcal we obtain

Fig, 5
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the remalning part of the meridlan, a curve symmerical with respect to the
p-axis, and also shown in Fig.3. PFig.3a corresponds to the case (6.6), Fig.
3p to the case (6.7).

In the interval (5.8) the quantities n, are positive, consequently the
number of changes of sign of the coefficients of the polynomial (6.5) eguals
two. Thus the number of positive roots of this polynomial 1is not greater
than two, and since 1n(0) > 0 and

I (0,) = — (5 — 4¢) (3 — 2¢) (1 — 2¢) (6° — 0p) (51 + 60} X
X {2¢ + (5 — 4c) (B — 2¢) (1 — 2¢) 02} <0
we have only one root in the interval (5.13). Let us denote it by ¢*
I1 (o**) = 0, 0 < o** <0,

Prom (5.11) and (5.13) 1t follows that the radical V (6° — o) (0, 1 0) does
not change the sign in the interval (5.13). Let us assume that this radical
is positive, and that the initlal instgnt of time 1s ¢ = O . From (5.12)
and (5.13) we can find that at instants of time which are close to the ini-
tial instant do/gr > O . Consequently, the sign of the radical ¢ and of
J8,~ 0 are both the same and both are positive.

Let us consider the curve (6.2), (6.4%). When ¢ is increasing, the vari-
able W, 1is decreasling from zero to its minimum value O, (o*) and then 1t 1l1s
increasing to the value % (0,), and vanishing at ¢ = o, . "The angle «
increases, reaching its maximum at ¢ = ¢, then decreases to the value
a{g,). The corresponding part of the curve investigated 1s shown in Fig.k.

*

When g ~ g, , the radical ,/g,— ¢ ohanges sign and go/dt becomes nega-
tive, ¢ decreases from to s:ro. e part of the curve corresonding to
this stage is symmetric to’%hc curve shown in 4 about the vertical line
through the point determined by the value g,. fter the successive varla-
tions of ¢ from zero to g,, and then from ¢, to zero, we obtain the
remaining part of the curve b‘u.s). When we transfer it on the surface of
revolutio:'xj;hoae meridian is shown in Fig.3, we obtain the fixed hodograph
shown in 0.

By (5.9) and (5.10) we find out that when ¢ = O , then p = 0, v, =— 1,
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ve= va= 0. Hence, at the initial instant the p-axls 1s vertical, the center
of gravity 1s above the point of support, the tip of the angular velocilty
vector colncides with the point 1 of the moving hodograph (Fig.2). The cor-
responding point on the fixed hodograph ls denoted by the same numeral 1
(Fig.6). 1In the successive motion of the body when the moving hodograph
rolls on the fixed hodograph, the points of these curves which come into
contact with each other are marked, respectively, by 2,3,4 and so on (Fig.7).
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